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Are classification and phytopathological diversity compatible in
Xanthomonas?
L Vauterin and J Swings

Laboratorium voor Microbiologie, Universiteit Gent, Ledeganckstraat 35, B-9000 Ghent, Belgium

The genus Xanthomonas is characterized by its phytopathogenic diversity and the host specificity of its members.

In the past, the classification of the members of this genus has been based primarily on the criterion of host speci-
ficity. This has led to a classification system which focused only on naming phytopathogenic variants on different
hosts. Extensive taxonomic examination of Xanthomonas has shown that the phytopathogenic specialization of the
bacteria is not correlated with the actual relationships within the genus. Based upon total genomic DNA homology,

the genus has been reclassified into 20 species. At present, non-pathogenic xanthomonads are frequently isolated
from plant material. As these strains often cannot be classified to existing species, it becomes clear that the diversity

of the genus is much greater than expected from the phytopathogenic subpopulation, which has been the primary
subject in the past. The example of  Xanthomonas also illustrates that attempts to divide bacterial populations into
discrete taxa conflict with the actual continuous nature of biodiversity.
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Xanthomonasgs a typical genus of plant pathogenic bac- pathogens, the genus has its beneficial aspects as well. Most
teria. Its representatives occur in many climatic regions anckanthomonads produce an extracellular polysaccharide
especially subtropical and tropical areas all over the world. called xanthan. This characteristic polymer of pentasacchar-
The pathogens cause a variety of diseases including wilides, which is responsible for the typical mucous appear-
necrosis, gummosis and vascular or parenchymatous dis- ance of colonies and cultures of xanthomonads, has a num-
eases on leaves, fruits or stems on diverse monocotyer of attractive physico-chemical features (for a recent
ledonous and dicotyledonous plant families [2]. According review, see [31]). It renders solutions a high degree of vis-
to the most thorough study in this domain [18], the hostcosity and is resistant to high temperatures and salt concen-
range ofXanthomonacludes at least 268 dicotyl and 124  trations, as well as to acid pH. Xanthan gum is produced
monocotyl plant species. However, since most known planindustrially on a large scale as a stabilizing, emulsifying,
pathogens are associated with crops and other cultivated and gelling agent in numerous commercial products, parti-
plants, the real number of plant species that is susceptibleularly in the food industry [31].
to xanthomonad pathogens might be far greater.
Members of the genuXanthomonasnfect many econ-
omically important crops. Among the most devastating of
them are those pathogens affecting primary food crops in  One of the most remarkable characteKstthahonas
third world regions, such aX. oryzaeon rice [22] andX. is the phytopathogenic diversity and the apparent host
axonopodis(X. campestrispv manihotison cassava [21]. specificity of the members. Originally, each variant show-
Other important pathogens includfe axonopodigv phase- ing a different host range or producing different disease
oli causing bacterial blight of bearX. axonopodis(X. = symptoms was classified as a separate species. This prac-
campestriy pvs glycines causing bacterial pustule of tice, denounced as the ‘new host — new species’ concept
soybeancitri, responsible for citrus cankeX. vesicatoria [29], led to a complex genus, finally containing more than
(X. campestrigpv vesicatorig, the causal agent of bacterial 100 species. In contrast to the phytopathogenic diversity of
spot of pepper and tomatX. campestrigpv campestris ~ Xanthomonathe general phenotypic characteristics of the
which causes black rot of cruciferX, translucengX. cam-  bacteria are remarkably uniform, at least as determined by
pestrispv transluceny, causing leaf streak and black chaff  available tests. Several comprehensive phenotypic studies
of small grains. This list is not complete as many otherhave been performed in attempts to differentiate the phyto-
Xanthomonaspecies and pathovars are highly specialized pathological groups by means other than the host from
pathogens for various crops, trees and ornamental plantahich isolated [3,6,34], but these have only illustrated the
A recent comprehensive survey is given by Haywatd phenotypic homogeneity of the genus. This knowledge, and
al [12]. also the fact that insufficient information was available
In spite of the importance oKanthomonasas plant  about the actual phytopathogenic specialization of the taxa,
was the major motive for merging almost Xlanthomonas
species into the single speci&s campestridoy Dye and
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infraspecific group which is defined only by the fact that  between scanned and digitized protein patterns, 19 clusters
it is, or is believed to be, characterized by a unigue hostould be delineated, of whicB. maltophilia(formerly X.
range or disease. Pathovar names are usually derived fromaltophilig) was the most aberrant. In some cases patho-
the name of the host plant. The pathovar subdivision is aars from related hosts such as members of the plant famil-
special-purpose classification which is designed to meet the Fadmceae Poaceae and Brassicaceaeseemed to be
practical needs of plant pathologists to name importantelated to each other [36]. Another striking result of this
plant pathogens. It was adopted as a provisional solution  study was the demonstration of the heterogeneity of many
until a classification would be established based on morpathovars egX. campestrispv vesicatoria X. campestris
generally accepted principles. Thus far, more than 140 pagusettiicola and X campestriqv dieffenbachiae
pathovars have been defined within campestrig§2,12]. Similarly, quantitative comparison of cellular fatty acid

Apart from the fact that pathovars are defined by one contents of more than 1000 strains in total demonstrated an
single feature and thus have no place in a modern taxainexpected high heterogeneity withilKanthomonas
nomic environment [39], this might have represented a use-  especially between a numbecashpestrispathovars
ful convenience if there were not three major practical[30,46]. Many of the groupings recovered were the same
problems with the system: (i) In most cases our knowledge  as those revealed by protein analysis, although significant
of the host range of strains of a particular pathovar is lim-discrepancies between the results were also found.
ited as no extensive host range study including numerous The decisive information came from DNA homology
cross-inoculations has ever been performed or at least pulbmeasurements determined by DNA hybridization among
lished; (ii) In an early DNA hybridization study, Murata 183 xanthomonad strains, selected from both the protein
and Starr [23] have reported that there is significant hetercand fatty acid groupings [35] and additional strains
geneity within a number of pathovars, at that time nomen-  hybridized in other studies [14,25]. In complex genera like
species, at the genomic level. Later, this finding was conXanthomonaswhere phenotypic features either yield no
firmed and extended in numerous taxonomic studies on discrimination, or are in part contradictory, we have to rely
Xanthomonag14,25,33,39,40,42,43]; (iii) Non-pathogenic on total genomic DNA hybridization as the standard cri-
xanthomonads, which are isolated from healthy as well as  terion for the delineation of species [27,39].
diseased plants, cannot be classified in a pathovar system.Thus, the largest DNA homology matrix presently pub-
Schroth and Hildebrand [27] were among the first to discuss  lished allowed the distinction of 20 genomic groups [35].
the shortcomings of a pathovar system in the light of genfour groups contained respectively the existing speXies
eral taxonomy, and suggested that a taxonomic scheme faibilineans X. fragariag X. populi andX. oryzae whereas
plant pathogenic bacteria should be based on DNAL6 DNA homology groups were new and not consistent
hybridization matrices. with the existing pathovar classification. The latter 16 gen-
omic groups were consequently described as new species
[35]. The complex rearrangements resulting from the DNA
homology relationships withinXanthomonasare sche-
matically represented in Figure 1. In general, DNA hom-
To sort out the relationships between the many pathovarslogy values between the different genomic groups were
and species, a series of studies on the taxonon¥aatho-  below 40%, whereas internal DNA homology values typi-
monashas been undertaken. These studies have mainlgally were higher than 80% [35]. This discontinuity is a
addressed the species delineation within the genus. Rather  strong argument in favour of the existence of discrete taxa
than extending classical phenotypic comparisons by testingithin Xanthomonasand justifies the proposed reclassi-
individual biochemical and physiological features [34], ana-  fication into species. Below, we use the new species
lytical fingerprinting techniques such as electrophoresis ohomenclature proposed by Vautegh al [35].
whole-cell proteins [38] and gas-chromatographic analysis
of cellular fatty acids [32] have been applied. The idea of%

A basis for a new classification by a polyphasic
approach

orrelation between taxonomic groups and

this approach was to analyze a large number of isolate hytopathogenicity groups

(more than 1000) from diverse origins using these fast ye

sensitive fingerprint techniques, and then select a more  The apparent contradiction between phenotype and real

restricted number of representative strains for further gengenomic diversity inXanthomonasbecomes particularly

omic study by DNA hybridization. This approach combines  true when the genomic groups (now species) are examined

the benefits of: (i) analyzing large numbers of strainsmore closely (Figure 1). In some obvious cases, former sin-

which is necessary to obtain a representative picture of the Xgbtampestripathovars have become one new species.

biological diversity of the organisms; (ii) overcoming Examples areX. hyacinthj X. theicola X. cassavaeX.

restrictions and errors inherent in a single typing methodgcucurbitag andX. melonis However, even more examples

by comparing more than one fingerprint technique; andccan be found of former pathovars that fall unexpectedly in

(iii) establishing genomic relationships between the  two or more species. The pathesiaatoria, a pathogen

obtained groupings by hybridizing DNA between selectedof tomato, pepper and a few other solanaceous hosts, which

strains. has always been described as a homogeneous group, caus-
Partial results on protein electrophoresis applied on 30Tg one consistent disease, appears to be composed of two

Xanthomonasstrains [37] have shown that thé. cam- completely unrelated genomic types which now constitute

pestris pathovars are much more heterogeneous thaX. vesicatoriaand a subgroup oK. axonopodisrespect-

expected. Based upon cluster analysis of similarities  ively. The two types were discovered previously by DNA
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Figure 1 Schematic representation of the rearrangements proposed within the X@mir®@monasresulting from a global taxonomic study of more
than 1000 strains and DNA hybridization experiments between 183 selected strains [35].
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hybridization [39] and by protein electrophoresis [37]. By axonopodis which showed substantially different patterns
subjecting this pathovar to more extensive studies, otheamong the pathovars that comprise the group.
workers have shown that these two groups can be dis-
tinguished by a number of features [28]. Even more notabl
is the case of the former pathovaroinsettiicold, patho-
genic for various members of the famiuphorbiaceae
Part of the strains within this pathovar, ie the strains iso-  Up to now, an odd 80 pathovars have been allocated in the
lated from Codiaeum variegatupma houseplant known as new classification. Although this classification is com-
croton, comprise the actual speckscodiaej whereas the pletely based on genetic grounds, there is growing evidence
other strains, all isolated frorBuphorbia pulcherrimaare  that the genomic groups can be differentiated by phenotypic
found in two other separate species:axonopodisandX.  features. Using Biolog and other metabolic tests, it was
arboricola (Figure 1). Strains of the former pathovatieéf-  possible to discriminate among a number of genomic
fenbachiaé remain within the same species X.( groups [13,35]. The database of fatty acid fingerprints of
axonopodi¥ but Brazilian strains isolated fronthurium  Xanthomonady Yang et al [46] was revised in the light
and strains isolated froRieffenbachian the United States ~ of the neXanthomonasspecies, and most new species
share DNA homology levels as low as 66%. The pathogensould be discriminated on the basis of quantitative fatty
from Anthuriumand Dieffenbachiacould also be differen- acid composition [44]. There are, however, more than 140
tiated on the basis of fatty acid analysis [4]. former X. campestrigpathovars in total, of which at least

The reverse case, where apparently unrelated pathogens 60 have never been analyzed taxonomically. Although most
together form one genomic group is also found in severabf the unstudied pathovars concern single isolations of a
examples. The most striking example is the relatedness  xanthomonad from endemic hosts, it implies that the real
between the pathovarselargonii (from Pelargoniumand  diversity of the genus is probably even greater than
Geraniun), vitians (from Lactucaspp) andhederag(from observed up to now. Some strains will obviously fit within
Hedera heliy, associated with different hosts and disease&nown species, but others may form new entities, or may
but together forming the new speci& hortorum The  further confuse existing groups. The situation is becoming
close relationship between the pathovaittans and hed- even more complex as so-called opportunistic xanthomon-
eraewas predicted by protein electrophoresis [37] whereas  ads are frequently isolated from plant material. These are
the relationship betweerpelargonii and hederae was  xanthomonad populations, living in close association with

fs the taxonomic diversity of Xanthomonas a
continuum?

revealed by fatty acid profiles [46]. plants but causing no apparent disease symptoms on the
Another group of highly related pathogens is composedost and missing tharp genes typical of pathogenic mem-
of the pathovargorylina, juglandisand pruni, now classi-  bers of the genus [17]. In the past, this group of non-patho-

fied in the specieX. arboricola It has been suggested that genic xanthomonads has been largely overlooked as they
these pathogens, infecting hazelnut, walnut and prune, were unimportant from an economic point of view. With
respectively, could have originated from a common xanthothe increasing interest in bacterial ecology and biodiversity
monad, that was able to infect and colonize trees in the however, their existence should not be neglected. A recent
temperate regions [36]. Leet al [16] found the members study of 70 presumptive non-pathogenic xanthomonads by
of this species to be distinguishable from other xanthomon- protein electrophoresis, fatty acid analysis, and monoclonal
ads by their ability to metabolize quinate. antibody testing [41] revealed that the population was very

The largest and most problematic group witikantho-  heterogeneous. When the strains were identified with the
monasis now the new species. axonopodisltis the larg-  databases of protein patterns and fatty acid profiles estab-
est group because it contains, besides the emended species lished by the authors, only forty-two strains were identified
X. axonopodisat least 32 formeK. campestrigpathovars as belonging to the same species, whereas five strains were
or subgroups of pathovars from the most diverse origin and identified as a different species. Eight strains remained
hosts. It is the most problematic group for the following unidentified by both methods, whereas in 15 cases the
reasons: (i) there is no known phenotypic method or combi- identification was ambiguous. Interestingly, the identifi-
nation of methods that can define this complex species asation at pathovar level was always ambiguous and not con-
a whole; (ii) phenotypic relationships between some of the cordant, and none of the non-pathogenic xanthomonads was
strains within X. axonopodisare sometimes lower than identified as belonging to the pathovars of the plant from
those with other species; and (iii) internal DNA homology  which they were isolated.
values are variable, ranging between 50 and 100%. It would These observations suggest that the pool of xanthomon-
be helpful to further split this loose group into more spec-  ads present in the environment is even more diverse and
ies, if there were clear subgroups. But this is neither thecomplex than what has been previously obvious as deter-
case by DNA homology nor by phenotypic relationships. mined from mainly pathogenic populations. Especially in
Rather, a continuous range of DNA homology between 50anthomonasbut also in other genera suchaenotropho-
and 100% is observed, and phenotypic methods such asonas (Vauterin and Swings, unpublished data), it is
protein electrophoresis and fatty acid profiling are notbecoming clear that the biodiversity is much greater than
always consistent. Hildebranagt al [13] determined expected. When numerous strains are analyzed and grouped
nutritional characteristics of 88anthomonastrains using by various methods, as Kanthomonasit appears that this
143 carbon sources. Similarly, they found that mgah-  genus constitutes a continuum of geno- and phenotypes
thomonasDNA groups could be differentiated from each with cloudy condensed nodes representing ecologically
other, except members of the largest group, ie the sp¥cies more successful types. Thus, any attempt to divide biologi-
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cal populations into discrete taxa, as is done in the current  nicely correlated with DNA hybridization data obtaine%1
classification systems, will always be more or less artificialpreviously [35]. Likewise, Louwset al [19,20] and
because of its inconsistency with the real continuous nature  Schneider and de Bruijn [26] demonstrated that the com-
of the biodiversity. Obviously, this situation will be more bined use of PCR fingerprints generated with REP, ERIC
pronounced in one genus than in anothéanthomonas and BOX primers [5] can be used to detect phylogenetic

with more than 140 phytopathogenic, and probably manyelationships among strains. These, and perhaps other simi-
more opportunistic variants, is an excellent example of bac-  lar fingerprint techniques that reveal information about the
terial biodiversity. total genome, are likely to become a valuable substitute for
DNA hybridization in the future, provided that the finger-

prints can be sufficiently standardized to allow databases

for identification to be generated.

Assessing the taxonomic diversity and relationships of bac-
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